博弈論
1.博弈論簡介
博弈論(Game Theory),博弈論是指研究多個個體或團隊之間在特定條件制約下的對局中利用相關(guān)方的策略,而實施對應(yīng)策略的學(xué)科。有時也稱為對策論,或者賽局理論,是研究具有斗爭或競爭性質(zhì)現(xiàn)象的理論和方法,它是應(yīng)用數(shù)學(xué)的一個分支,既是現(xiàn)代數(shù)學(xué)的一個新分支,也是運籌學(xué)的一個重要學(xué)科。目前在生物學(xué)、經(jīng)濟學(xué)、國際關(guān)系學(xué)、計算機科學(xué)、政治學(xué)、軍事戰(zhàn)略和其他很多學(xué)科都有廣泛的應(yīng)用。主要研究公式化了的激勵結(jié)構(gòu)(游戲或者博弈(Game))間的相互作用.
博弈論考慮游戲中的個體的預(yù)測行為和實際行為,并研究它們的優(yōu)化策略。表面上不同的相互作用可能表現(xiàn)出相似的激勵結(jié)構(gòu)(incentive structure),所以他們是同一個游戲的特例。其中一個有名有趣的應(yīng)用例子是囚徒困境悖論(Prisoner's dilemma)。
具有競爭或?qū)剐再|(zhì)的行為成為博弈行為。在這類行為中,參加斗爭或競爭的各方各自具有不同的目標或利益。為了達到各自的目標和利益,各方必須考慮對手的各種可能的行動方案,并力圖選取對自己最為有利或最為合理的方案。比如日常生活中的下棋,打牌等。博弈論就是研究博弈行為中斗爭各方是否存在著最合理的行為方案,以及如何找到這個合理的行為方案的數(shù)學(xué)理論和方法。
生物學(xué)家使用博弈理論來理解和預(yù)測進化論的某些結(jié)果。例如:John Maynard Smith 和George R. Price在1973年發(fā)表于Nature上的論文中提出的“evolutionarily stable strategy”的這個概念就是使用了博弈理論。還可以參見演化博弈理論(evolutionary game theory)和行為生態(tài)學(xué)(behavioral ecology)。
博弈論也應(yīng)用于數(shù)學(xué)的其他分支,如概率論、統(tǒng)計和線性規(guī)劃等。
2.博弈論的發(fā)展
博弈論思想古已有之,我國古代的《孫子兵法》就不僅是一部軍事著作,而且算是最早的一部博弈論專著。博弈論最初主要研究象棋、橋牌、賭博中的勝負問題,人們對博弈局勢的把握只停留在經(jīng)驗上,沒有向理論化發(fā)展,正式發(fā)展成一門學(xué)科則是在20世紀初。
對于博弈論的研究,開始于策墨洛(Zermelo,1913)、波雷爾(Borel,1921)及馮·諾伊曼(von Neumann, 1928),后來由馮·諾伊曼和奧斯卡·摩根斯坦(von Neumann and Morgenstern,1944,1947)首次對其系統(tǒng)化和形式化(參照Myerson, 1991)。隨后約翰·福布斯·納什(John Forbes Nash Jr., 1950, 1951)利用不動點定理證明了均衡點的存在,為博弈論的一般化奠定了堅實的基礎(chǔ)。此外,塞爾頓、哈桑尼的研究也對博弈論發(fā)展起到推動作用。今天博弈論已發(fā)展成一門較完善的的學(xué)科。
通常認為,現(xiàn)代經(jīng)濟博弈論是在20世紀50年代由美國著名數(shù)學(xué)家馮·諾依曼(von Neumann)的經(jīng)濟學(xué)家奧斯卡·摩根斯坦(Oscar Morgenstern)引入經(jīng)濟學(xué)的,目前已成為經(jīng)濟分析的主要工具之一,對產(chǎn)業(yè)組織理論、委托代理理論、信息經(jīng)濟學(xué)等經(jīng)濟理論的發(fā)展做出了非常重要的貢獻。1994年的諾貝爾經(jīng)濟學(xué)獎頒發(fā)給了約翰·納什(John Nash)等三位在博弈論研究中成績卓著的經(jīng)濟學(xué)家,1996年的諾貝爾經(jīng)濟學(xué)獎又授予在博弈論的應(yīng)用方面有著重大成就的經(jīng)濟學(xué)家。由于博弈論重視經(jīng)濟主體之間的相互聯(lián)系及其辨證關(guān)系,大大拓寬了傳統(tǒng)經(jīng)濟學(xué)的分析思路,使其更加接近現(xiàn)實市場競爭,從而成為現(xiàn)代微觀經(jīng)濟學(xué)的重要基石,也為現(xiàn)代宏觀經(jīng)濟學(xué)提供了更加堅實的微觀基礎(chǔ)。
當代博弈論的“三大家”和“四君子”
"三大家" 包括約翰·福布斯·納什、約翰·C·海薩尼以及萊因哈德·澤爾騰。這三人同時因為他們對博弈論的突出貢獻而獲得1994年的瑞典銀行經(jīng)濟學(xué)獎(也稱諾貝爾經(jīng)濟學(xué)獎)。
"四君子" 包括羅伯特·J·奧曼、肯·賓摩爾、戴維·克瑞普斯以及阿里爾·魯賓斯坦。
3.博弈論的基本概念
博弈要素:
(1)局中人(players):在一場競賽或博弈中,每一個有決策權(quán)的參與者成為一個局中人。只有兩個局中人的博弈現(xiàn)象稱為“兩人博弈”,而多于兩個局中人的博弈稱為 “多人博弈”。
(2)策略(strategies):一局博弈中,每個局中人都有選擇實際可行的完整的行動方案,即方案不是某階段的行動方案,而是指導(dǎo)整個行動的一個方案,一個局中人的一個可行的自始至終全局籌劃的一個行動方案,稱為這個局中人的一個策略。如果在一個博弈中局中人都總共有有限個策略,則稱為“有限博弈”,否則稱為“無限博弈”。
(3)得失(payoffs):一局博弈結(jié)局時的結(jié)果稱為得失。每個局中人在一局博弈結(jié)束時的得失,不僅與該局中人自身所選擇的策略有關(guān),而且與全局中人所取定的一組策略有關(guān)。所以,一局博弈結(jié)束時每個局中人的“得失”是全體局中人所取定的一組策略的函數(shù),通常稱為支付(payoff)函數(shù)。
(4)次序(orders):各博弈方的決策有先后之分,且一個博弈方要作不止一次的決策選擇,就出現(xiàn)了次序問題;其他要素相同次序不同,博弈就不同。
(5)博弈涉及到均衡:均衡是平衡的意思,在經(jīng)濟學(xué)中,均衡意即相關(guān)量處于穩(wěn)定值。在供求關(guān)系中,某一商品市場如果在某一價格下,想以此價格買此商品的人均能買到,而想賣的人均能賣出,此時我們就說,該商品的供求達到了均衡。所謂納什均衡,它是一穩(wěn)定的博弈結(jié)果。
納什均衡(Nash Equilibrium):在一策略組合中,所有的參與者面臨這樣一種情況,當其他人不改變策略時,他此時的策略是最好的。也就是說,此時如果他改變策略他的支付將會降低。在納什均衡點上,每一個理性的參與者都不會有單獨改變策略的沖動。納什均衡點存在性證明的前提是“博弈均衡偶”概念的提出。所謂“均衡偶”是在二人零和博弈中,當局中人A采取其最優(yōu)策略a*,局中人B也采取其最優(yōu)策略b*,如果局中人B仍采取b*,而局中人A卻采取另一種策略a,那么局中人A的支付不會超過他采取原來的策略a*的支付。這一結(jié)果對局中人B亦是如此。
這樣,“均衡偶”的明確定義為:一對策略a*(屬于策略集A)和策略b*(屬于策略集B)稱之為均衡偶,對任一策略a(屬于策略集A)和策略b(屬于策略集B),總有:偶對(a, b*)≤偶對(a*,b*)≥偶對(a*,b)。
對于非零和博弈也有如下定義:一對策略a*(屬于策略集A)和策略b*(屬于策略集B)稱為非零和博弈的均衡偶,對任一策略a(屬于策略集A)和策略 b(屬于策略集B),總有:對局中人A的偶對(a, b*) ≤偶對(a*,b*);對局中人B的偶對(a*,b)≤偶對(a*,b*)。
有了上述定義,就立即得到納什定理:
任何具有有限純策略的二人博弈至少有一個均衡偶。這一均衡偶就稱為納什均衡點。
納什定理的嚴格證明要用到不動點理論,不動點理論是經(jīng)濟均衡研究的主要工具。通俗地說,尋找均衡點的存在性等價于找到博弈的不動點。
納什均衡點概念提供了一種非常重要的分析手段,使博弈論研究可以在一個博弈結(jié)構(gòu)里尋找比較有意義的結(jié)果。
但納什均衡點定義只局限于任何局中人不想單方面變換策略,而忽視了其他局中人改變策略的可能性,因此,在很多情況下,納什均衡點的結(jié)論缺乏說服力,研究者們形象地稱之為“天真可愛的納什均衡點”。
塞爾頓(R·Selten)在多個均衡中剔除一些按照一定規(guī)則不合理的均衡點,從而形成了兩個均衡的精煉概念:子博弈完全均衡和顫抖的手完美均衡。
4.博弈的類型
合作博弈和非合作博弈的區(qū)別在于相互發(fā)生作用的當事人之間有沒有一個具有約束力的協(xié)議,如果有,就是合作博弈,如果沒有,就是非合作博弈。
靜態(tài)博弈是指在博弈中,參與人同時選擇或雖非同時選擇但后行動者并不知道先行動者采取了什么具體行動;
動態(tài)博弈是指在博弈中,參與人的行動有先后順序,且后行動者能夠觀察到先行動者所選擇的行動。通俗的理解:"囚徒困境"就是同時決策的,屬于靜態(tài)博弈;而棋牌類游戲等決策或行動有先后次序的,屬于動態(tài)博弈
完全博弈是指在博弈過程中,每一位參與人對其他參與人的特征、策略空間及收益函數(shù)有準確的信息。
不完全信息博弈是指如果參與人對其他參與人的特征、策略空間及收益函數(shù)信息了解的不夠準確、或者不是對所有參與人的特征、策略空間及收益函數(shù)都有準確的信息,在這種情況下進行的博弈就是不完全信息博弈。
目前經(jīng)濟學(xué)家們現(xiàn)在所談的博弈論一般是指非合作博弈,由于合作博弈論比非合作博弈論復(fù)雜,在理論上的成熟度遠遠不如非合作博弈論。非合作博弈又分為:完全信息靜態(tài)博弈,完全信息動態(tài)博弈,不完全信息靜態(tài)博弈,不完全信息動態(tài)博弈。與上述四種博弈相對應(yīng)的均衡概念為:納什均衡(Nash equilibrium),子博弈精煉納什均衡(subgame perfect Nash equilibrium),貝葉斯納什均衡(Bayesian Nash equilibrium),精煉貝葉斯納什均衡(perfect Bayesian Nash equilibrium)。
博弈論還有很多分類,比如:以博弈進行的次數(shù)或者持續(xù)長短可以分為有限博弈和無限博弈;以表現(xiàn)形式也可以分為一般型(戰(zhàn)略型)或者展開型,等等。
5.博弈論的意義
博弈論的研究方法和其他許多利用數(shù)學(xué)工具研究社會經(jīng)濟現(xiàn)象的學(xué)科一樣,都是從復(fù)雜的現(xiàn)象中抽象出基本的元素,對這些元素構(gòu)成的數(shù)學(xué)模型進行分析,而后逐步引入對其形勢產(chǎn)影響的其他因素,從而分析其結(jié)果。
基于不同抽象水平,形成三種博弈表述方式,標準型、擴展型和特征函數(shù)型,利用這三種表述形式,可以研究形形色色的問題。因此,它被稱為“社會科學(xué)的數(shù)學(xué)”從理論上講,博弈論是研究理性的行動者相互作用的形式理論,而實際上正深入到經(jīng)濟學(xué)、政治學(xué)、社會學(xué)等等,被各門社會科學(xué)所應(yīng)用。
博弈論是指某個個人或是組織,面對一定的環(huán)境條件,在一定的規(guī)則約束下,依靠所掌握的信息,從各自選擇的行為或是策略進行選擇并加以實施,并從各自取得相應(yīng)結(jié)果或收益的過程,在經(jīng)濟學(xué)上博弈論是個非常重要的理論概念。
什么是博弈論?古語有云,世事如棋。生活中每個人如同棋手,其每一個行為如同在一張看不見的棋盤上布一個子,精明慎重的棋手們相互揣摩、相互牽制,人人爭贏,下出諸多精彩紛呈、變化多端的棋局。博弈論是研究棋手們 “出棋” 著數(shù)中理性化、邏輯化的部分,并將其系統(tǒng)化為一門科學(xué)。換句話說,就是研究個體如何在錯綜復(fù)雜的相互影響中得出最合理的策略。事實上,博弈論正是衍生于古老的游戲或曰博弈如象棋、撲克等。數(shù)學(xué)家們將具體的問題抽象化,通過建立自完備的邏輯框架、體系研究其規(guī)律及變化。這可不是件容易的事情,以最簡單的二人對弈為例,稍想一下便知此中大有玄妙:若假設(shè)雙方都精確地記得自己和對手的每一步棋且都是最“理性” 的棋手,甲出子的時候,為了贏棋,得仔細考慮乙的想法,而乙出子時也得考慮甲的想法,所以甲還得想到乙在想他的想法,乙當然也知道甲想到了他在想甲的想法…
面對如許重重迷霧,博弈論怎樣著手分析解決問題,怎樣對作為現(xiàn)實歸納的抽象數(shù)學(xué)問題求出最優(yōu)解、從而為在理論上指導(dǎo)實踐提供可能性呢?現(xiàn)代博弈理論由匈牙利大數(shù)學(xué)家馮·諾伊曼于20世紀20年代開始創(chuàng)立,1944年他與經(jīng)濟學(xué)家奧斯卡·摩根斯特恩合作出版的巨著《博弈論與經(jīng)濟行為》,標志著現(xiàn)代系統(tǒng)博弈理論的初步形成。對于非合作、純競爭型博弈,諾伊曼所解決的只有二人零和博弈--好比兩個人下棋、或是打乒乓球,一個人贏一著則另一個人必輸一著,凈獲利為零。在這里抽象化后的博弈問題是,已知參與者集合(兩方) ,策略集合(所有棋著) ,和盈利集合(贏子輸子) ,能否且如何找到一個理論上的“解” 或“平衡” ,也就是對參與雙方來說都最“合理” 、最優(yōu)的具體策略?怎樣才是“合理” ?應(yīng)用傳統(tǒng)決定論中的“最小最大” 準則,即博弈的每一方都假設(shè)對方的所有功略的根本目的是使自己最大程度地失利,并據(jù)此最優(yōu)化自己的對策,諾伊曼從數(shù)學(xué)上證明,通過一定的線性運算,對于每一個二人零和博弈,都能夠找到一個“最小最大解” 。通過一定的線性運算,競爭雙方以概率分布的形式隨機使用某套最優(yōu)策略中的各個步驟,就可以最終達到彼此盈利最大且相當。當然,其隱含的意義在于,這套最優(yōu)策略并不依賴于對手在博弈中的操作。用通俗的話說,這個著名的最小最大定理所體現(xiàn)的基本“理性” 思想是“抱最好的希望,做最壞的打算” 。
6.博弈論分析
一、經(jīng)濟學(xué)中的“智豬博弈”(Pigs’payoffs)
這個例子講的是:豬圈里有兩頭豬,一頭大豬,一頭小豬。豬圈的一邊有個踏板,每踩一下踏板,在遠離踏板的豬圈的另一邊的投食口就會落下少量的食物。如果有一只豬去踩踏板,另一只豬就有機會搶先吃到另一邊落下的食物。當小豬踩動踏板時,大豬會在小豬跑到食槽之前剛好吃光所有的食物;若是大豬踩動了踏板,則還有機會在小豬吃完落下的食物之前跑到食槽,爭吃到另一半殘羹。
那么,兩只豬各會采取什么策略?答案是:小豬將選擇“搭便車”策略,也就是舒舒服服地等在食槽邊;而大豬則為一點殘羹不知疲倦地奔忙于踏板和食槽之間。
原因何在?因為,小豬踩踏板將一無所獲,不踩踏板反而能吃上食物。對小豬而言,無論大豬是否踩動踏板,不踩踏板總是好的選擇。反觀大豬,已明知小豬是不會去踩動踏板的,自己親自去踩踏板總比不踩強吧,所以只好親力親為了。
“小豬躺著大豬跑”的現(xiàn)象是由于故事中的游戲規(guī)則所導(dǎo)致的。規(guī)則的核心指標是:每次落下的食物數(shù)量和踏板與投食口之間的距離。
如果改變一下核心指標,豬圈里還會出現(xiàn)同樣的“小豬躺著大豬跑”的景象嗎?試試看。
改變方案一:減量方案。投食僅原來的一半分量。結(jié)果是小豬大豬都不去踩踏板了。小豬去踩,大豬將會把食物吃完;大豬去踩,小豬將也會把食物吃完。誰去踩踏板,就意味著為對方貢獻食物,所以誰也不會有踩踏板的動力了。
如果目的是想讓豬們?nèi)ザ嗖忍ぐ?,這個游戲規(guī)則的設(shè)計顯然是失敗的。
改變方案二:增量方案。投食為原來的一倍分量。結(jié)果是小豬、大豬都會去踩踏板。誰想吃,誰就會去踩踏板。反正對方不會一次把食物吃完。小豬和大豬相當于生活在物質(zhì)相對豐富的“共產(chǎn)主義”社會,所以競爭意識卻不會很強。
對于游戲規(guī)則的設(shè)計者來說,這個規(guī)則的成本相當高(每次提供雙份的食物);而且因為競爭不強烈,想讓豬們?nèi)ザ嗖忍ぐ宓男Ч⒉缓谩?/p>
改變方案三:減量加移位方案。投食僅原來的一半分量,但同時將投食口移到踏板附近。結(jié)果呢,小豬和大豬都在拼命地搶著踩踏板。等待者不得食,而多勞者多得。每次的收獲剛好消費完。
對于游戲設(shè)計者,這是一個最好的方案。成本不高,但收獲最大。
原版的“智豬博弈”故事給了競爭中的弱者(小豬)以等待為最佳策略的啟發(fā)。但是對于社會而言,因為小豬未能參與競爭,小豬搭便車時的社會資源配置的并不是最佳狀態(tài)。為使資源最有效配置,規(guī)則的設(shè)計者是不愿看見有人搭便車的,政府如此,公司的老板也是如此。而能否完全杜絕“搭便車”現(xiàn)象,就要看游戲規(guī)則的核心指標設(shè)置是否合適了。
比如,公司的激勵制度設(shè)計,獎勵力度太大,又是持股,又是期權(quán),公司職員個個都成了百萬富翁,成本高不說,員工的積極性并不一定很高。這相當于“智豬博弈”增量方案所描述的情形。但是如果獎勵力度不大,而且見者有份(不勞動的“小豬”也有),一度十分努力的大豬也不會有動力了----就象“智豬博弈”減量方案一所描述的情形。最好的激勵機制設(shè)計就象改變方案三----減量加移位的辦法,獎勵并非人人有份,而是直接針對個人(如業(yè)務(wù)按比例提成),既節(jié)約了成本(對公司而言),又消除了“搭便車”現(xiàn)象,能實現(xiàn)有效的激勵。
許多人并未讀過“智豬博弈”的故事,但是卻在自覺地使用小豬的策略。股市上等待莊家抬轎的散戶;等待產(chǎn)業(yè)市場中出現(xiàn)具有贏利能力新產(chǎn)品、繼而大舉仿制牟取暴利的游資;公司里不創(chuàng)造效益但分享成果的人,等等。因此,對于制訂各種經(jīng)濟管理的游戲規(guī)則的人,必須深諳“智豬博弈”指標改變的個中道理。
二、囚徒困境博弈
在博弈論中,含有占優(yōu)戰(zhàn)略均衡的一個著名例子是由塔克給出的“囚徒困境”(prisoners’ dilemma)博弈模型。該模型用一種特別的方式為我們講述了一個警察與小偷的故事。假設(shè)有兩個小偷A(chǔ)和B聯(lián)合犯事、私入民宅被警察抓住。警方將兩人分別置于不同的兩個房間內(nèi)進行審訊,對每一個犯罪嫌疑人,警方給出的政策是:如果一個犯罪嫌疑人坦白了罪行,交出了贓物,于是證據(jù)確鑿,兩人都被判有罪。如果另一個犯罪嫌疑人也作了坦白,則兩人各被判刑8年;如果另一個犯罪嫌疑人沒有坦白而是抵賴,則以妨礙公務(wù)罪(因已有證據(jù)表明其有罪)再加刑2年,而坦白者有功被減刑8年,立即釋放。如果兩人都抵賴,則警方因證據(jù)不足不能判兩人的偷竊罪,但可以私入民宅的罪名將兩人各判入獄1年。下表給出了這個博弈的支付矩陣。
表 囚徒困境博弈 [Prisoner's dilemma]
B 坦白 | B 抵賴 | |
A 坦白 | –8, –8 | 0, –10 |
A 抵賴 | –10, 0 | –1, –1 |
我們來看看這個博弈可預(yù)測的均衡是什么。對A來說,盡管他不知道B作何選擇,但他知道無論B選擇什么,他選擇“坦白”總是最優(yōu)的。顯然,根據(jù)對稱性,B也會選擇“坦白”,結(jié)果是兩人都被判刑8年。但是,倘若他們都選擇“抵賴”,每人只被判刑1年。在表2.2中的四種行動選擇組合中,(抵賴、抵賴)是帕累托最優(yōu)的,因為偏離這個行動選擇組合的任何其他行動選擇組合都至少會使一個人的境況變差。不難看出,“坦白”是任一犯罪嫌疑人的占優(yōu)戰(zhàn)略,而(坦白,坦白)是一個占優(yōu)戰(zhàn)略均衡。
要了解納什的貢獻,首先要知道什么是非合作博弈問題?,F(xiàn)在幾乎所有的博弈論教科書上都會講“囚犯的兩難處境”的例子,每本書上的例子都大同小異。
博弈論畢竟是數(shù)學(xué),更確切地說是運籌學(xué)的一個分支,談經(jīng)論道自然少不了數(shù)學(xué)語言,外行人看來只是一大堆數(shù)學(xué)公式。好在博弈論關(guān)心的是日常經(jīng)濟生活問題,所以不能不食人間煙火。其實這一理論是從棋弈、撲克和戰(zhàn)爭等帶有競賽、對抗和決策性質(zhì)的問題中借用的術(shù)語,聽上去有點玄奧,實際上卻具有重要現(xiàn)實意義。博弈論大師看經(jīng)濟社會問題猶如棋局,常常寓深刻道理于游戲之中。所以,多從我們的日常生活中的凡人小事入手,以我們身邊的故事做例子,娓娓道來,并不乏味。
話說有一天,一位富翁在家中被殺,財物被盜。警方在此案的偵破過程中,抓到兩個犯罪嫌疑人,斯卡爾菲絲和那庫爾斯,并從他們的住處搜出被害人家中丟失的財物。但是,他們矢口否認曾殺過人,辯稱是先發(fā)現(xiàn)富翁被殺,然后只是順手牽羊偷了點兒東西。于是警方將兩人隔離,分別關(guān)在不同的房間進行審訊。由地方檢察官分別和每個人單獨談話。
檢察官說,“由于你們的偷盜罪已有確鑿的證據(jù),所以可以判你們一年刑期。但是,我可以和你做個交易。如果你單獨坦白殺人的罪行,我只判你三個月的監(jiān)禁,但你的同伙要被判十年刑。如果你拒不坦白,而被同伙檢舉,那么你就將被判十年刑,他只判三個月的監(jiān)禁。但是,如果你們兩人都坦白交代,那么,你們都要被判5年刑?!彼箍柗平z和那庫爾斯該怎么辦呢?他們面臨著兩難的選擇——坦白或抵賴。顯然最好的策略是雙方都抵賴,結(jié)果是大家都只被判一年。但是由于兩人處于隔離的情況下無法串供。所以,按照亞當·斯密的理論,每一個人都是從利己的目的出發(fā),他們選擇坦白交代是最佳策略。因為坦白交代可以期望得到很短的監(jiān)禁———3個月,但前提是同伙抵賴,顯然要比自己抵賴要坐10年牢好。這種策略是損人利己的策略。不僅如此,坦白還有更多的好處。如果對方坦白了而自己抵賴了,那自己就得坐10年牢。太不劃算了!因此,在這種情況下還是應(yīng)該選擇坦白交代,即使兩人同時坦白,至多也只判5年,總比被判 10年好吧。所以,兩人合理的選擇是坦白,原本對雙方都有利的策略(抵賴)和結(jié)局(被判1年刑)就不會出現(xiàn)。
這樣兩人都選擇坦白的策略以及因此被判5年的結(jié)局被稱為“納什均衡”,也叫非合作均衡。因為,每一方在選擇策略時都沒有“共謀”(串供),他們只是選擇對自己最有利的策略,而不考慮社會福利或任何其他對手的利益。也就是說,這種策略組合由所有局中人(也稱當事人、參與者)的最佳策略組合構(gòu)成。沒有人會主動改變自己的策略以便使自己獲得更大利益?!扒敉降膬呻y選擇”有著廣泛而深刻的意義。個人理性與集體理性的沖突,各人追求利己行為而導(dǎo)致的最終結(jié)局是一個“納什均衡”,也是對所有人都不利的結(jié)局。他們兩人都是在坦白與抵賴策略上首先想到自己,這樣他們必然要服長的刑期。只有當他們都首先替對方著想時,或者相互合謀(串供)時,才可以得到最短時間的監(jiān)禁的結(jié)果。“納什均衡”首先對亞當·斯密的“看不見的手”的原理提出挑戰(zhàn)。按照斯密的理論,在市場經(jīng)濟中,每一個人都從利己的目的出發(fā),而最終全社會達到利他的效果。
不妨讓我們重溫一下這位經(jīng)濟學(xué)圣人在《國富論》中的名言:“通過追求(個人的)自身利益,他常常會比其實際上想做的那樣更有效地促進社會利益?!睆摹凹{什均衡”我們引出了“看不見的手”的原理的一個悖論:從利己目的出發(fā),結(jié)果損人不利己,既不利己也不利他。兩個囚徒的命運就是如此。從這個意義上說,“納什均衡”提出的悖論實際上動搖了西方經(jīng)濟學(xué)的基石。因此,從“納什均衡”中我們還可以悟出一條真理:合作是有利的“利己策略”。但它必須符合以下黃金律:按照你愿意別人對你的方式來對別人,但只有他們也按同樣方式行事才行。也就是中國人說的“己所不欲勿施于人”。但前提是人所不欲勿施于我。其次,“納什均衡”是一種非合作博弈均衡,在現(xiàn)實中非合作的情況要比合作情況普遍。所以“納什均衡”是對馮·諾依曼和摩根斯特恩的合作博弈理論的重大發(fā)展,甚至可以說是一場革命。
從“納什均衡”的普遍意義中我們可以深刻領(lǐng)悟司空見慣的經(jīng)濟、社會、政治、國防、管理和日常生活中的博弈現(xiàn)象。我們將例舉出許多類似于“囚徒的兩難處境” 這樣的例子。如價格戰(zhàn)博弈、軍奮競賽博弈、污染博弈等等。一般的博弈問題由三個要素所構(gòu)成:即局中人(players)又稱當事人、參與者、策略等等的集合,策略 (strategies)集合以及每一對局中人所做的選擇和贏得(payoffs)集合。其中所謂贏得是指如果一個特定的策略關(guān)系被選擇,每一局中人所得到的效用。所有的博弈問題都會遇到這三個要素。
三、價格戰(zhàn)博弈
現(xiàn)在我們經(jīng)常會遇到各種各樣的家電價格大戰(zhàn),彩電大戰(zhàn)、冰箱大戰(zhàn)、空調(diào)大戰(zhàn)、微波爐大戰(zhàn)……這些大戰(zhàn)的受益者首先是消費者。每當看到一種家電產(chǎn)品的價格大戰(zhàn),百姓都會“沒事兒偷著樂”。在這里,我們可以解釋廠家價格大戰(zhàn)的結(jié)局也是一個“納什均衡”,而且價格戰(zhàn)的結(jié)果是誰都沒錢賺。因為博弈雙方的利潤正好是零。競爭的結(jié)果是穩(wěn)定的,即是一個“納什均衡”。這個結(jié)果可能對消費者是有利的,但對廠商而言是災(zāi)難性的。所以,價格戰(zhàn)對廠商而言意味著自殺。從這個案例中我們可以引伸出兩個問題,一是競爭削價的結(jié)果或“納什均衡”可能導(dǎo)致一個有效率的零利潤結(jié)局。二是如果不采取價格戰(zhàn),作為一種敵對博弈論 (vivalry game)其結(jié)果會如何呢?每一個企業(yè),都會考慮采取正常價格策略,還是采取高價格策略形成壟斷價格,并盡力獲取壟斷利潤。如果壟斷可以形成,則博弈雙方的共同利潤最大。這種情況就是壟斷經(jīng)營所做的,通常會抬高價格。另一個極端的情況是廠商用正常的價格,雙方都可以獲得利潤。從這一點,我們又引出一條基本準則:“把你自己的戰(zhàn)略建立在假定對手會按其最佳利益行動的基礎(chǔ)上”。事實上,完全競爭的均衡就是“納什均衡”或“非合作博弈均衡”。在這種狀態(tài)下,每一個廠商或消費者都是按照所有的別人已定的價格來進行決策。在這種均衡中,每一企業(yè)要使利潤最大化,消費者要使效用最大化,結(jié)果導(dǎo)致了零利潤,也就是說價格等于邊際成本。在完全競爭的情況下,非合作行為導(dǎo)致了社會所期望的經(jīng)濟效率狀態(tài)。如果廠商采取合作行動并決定轉(zhuǎn)向壟斷價格,那么社會的經(jīng)濟效率就會遭到破壞。這就是為什么WTO和各國政府要加強反壟斷的意義所在。
四、污染博弈
假如市場經(jīng)濟中存在著污染,但政府并沒有管制的環(huán)境,企業(yè)為了追求利潤的最大化,寧愿以犧牲環(huán)境為代價,也絕不會主動增加環(huán)保設(shè)備投資。按照看不見的手的原理,所有企業(yè)都會從利己的目的出發(fā),采取不顧環(huán)境的策略,從而進入“納什均衡”狀態(tài)。如果一個企業(yè)從利他的目的出發(fā),投資治理污染,而其他企業(yè)仍然不顧環(huán)境污染,那么這個企業(yè)的生產(chǎn)成本就會增加,價格就要提高,它的產(chǎn)品就沒有競爭力,甚至企業(yè)還要破產(chǎn)。這是一個“看不見的手的有效的完全競爭機制”失敗的例證。直到20世紀90年代中期,中國鄉(xiāng)鎮(zhèn)企業(yè)的盲目發(fā)展造成嚴重污染的情況就是如此。只有在政府加強污染管制時,企業(yè)才會采取低污染的策略組合。企業(yè)在這種情況下,獲得與高污染同樣的利潤,但環(huán)境將更好。
五、貿(mào)易戰(zhàn)博弈論
這個問題對于剛剛加入WTO的中國而言尤為重要。任何一個國家在國際貿(mào)易中都面臨著保持貿(mào)易自由與實行貿(mào)易保護主義的兩難選擇。貿(mào)易自由與壁壘問題,也是一個“納什均衡”,這個均衡是貿(mào)易雙方采取不合作博弈的策略,結(jié)果使雙方因貿(mào)易戰(zhàn)受到損害。X國試圖對Y國進行進口貿(mào)易限制,比如提高關(guān)稅,則Y國必然會進行反擊,也提高關(guān)稅,結(jié)果誰也沒有撈到好處。反之,如X和Y能達成合作性均衡,即從互惠互利的原則出發(fā),雙方都減少關(guān)稅限制,結(jié)果大家都從貿(mào)易自由中獲得了最大利益,而且全球貿(mào)易的總收益也增加了。
博弈論--這是一個熱得燙手的概念。它不僅僅存在于數(shù)學(xué)的運籌學(xué)中,也正在經(jīng)濟學(xué)中占據(jù)越來越重要的地位(近幾年諾貝爾經(jīng)濟學(xué)獎就頻頻授予博弈論研究者),但如果你認為博弈論的應(yīng)用領(lǐng)域僅限于此的話,那你就大錯了。實際上,博弈論甚至在我們的工作和生活中無處不在!在工作中,你在和上司博弈,也在和下屬博弈,你也同樣會跟其他相關(guān)部門人員博弈;而要開展業(yè)務(wù),你更是在和你的客戶以及競爭對手博弈。在生活中,博弈仍然無處不在。博弈論代表著一種全新的分析方法和全新的思想。
諾貝爾經(jīng)濟學(xué)獎獲得者包羅·薩繆爾遜如是說:要想在現(xiàn)代社會做個有價值的人,你就必須對博弈論有個大致的了解。也可以這樣說,要想贏得生意,不可不學(xué)博弈論;要想贏得生活,同樣不可不學(xué)博弈論。
7.博弈論與納什平衡
博弈論(game theory)對人的基本假定是:人是理性的(rational,或者說自私的),理性的人是指他在具體策略選擇時的目的是使自己的利益最大化,博弈論研究的是理性的人之間如何進行策略選擇的。
納什(John Nash)編制的博弈論經(jīng)典故事"囚徒的困境",說明了非合作博弈及其均衡解的成立,故稱"納什平衡"。
所有的博弈問題都會遇到三個要素。在囚徒的故事中,兩個囚徒是當事人(players)又稱參與者;當事人所做的選擇策略 (strategies)是承認了殺人事實,最后兩個人均贏得(payoffs)了中間的宣判結(jié)果。如果兩個囚徒之中有一個承認殺人,另外一個抵賴,不承認殺人,那么承認者將會得到減刑處理,而抵賴者將會得到最嚴厲的死刑判決,在納什故事中兩個人都承認了犯罪事實,所以兩個囚徒得到的是中間的結(jié)果。
類似的: 我們也能從“自私的基因”等理論中看到“納什平衡”的體現(xiàn)。
博弈中最優(yōu)策略的產(chǎn)生
艾克斯羅德(Robert Axelrod)在開始研究合作之前,設(shè)定了兩個前提:一、每個人都是自私的;二、沒有權(quán)威干預(yù)個人決策。也就是說,個人可以完全按照自己利益最大化的企圖進行決策。在此前提下,合作要研究的問題是:第一、人為什么要合作;第二、人什么時候是合作的,什么時候又是不合作的;第三、如何使別人與你合作。
社會實踐中有很多合作的問題。比如國家之間的關(guān)稅報復(fù),對他國產(chǎn)品提高關(guān)稅有利于保護本國的經(jīng)濟,但是國家之間互提關(guān)稅,產(chǎn)品價格就提高了,喪失了競爭力,損害了國際貿(mào)易的互補優(yōu)勢。在對策中,由于雙方各自追求自己利益的最大化,導(dǎo)致了群體利益的損害。對策論以著名的囚犯困境來描述這個問題。
A和B各表示一個人,他們的選擇是完全無差異的。選擇C代表合作,選擇D代表不合作。如果AB都選擇C合作,則兩人各得3分;如果一方選C,一方選D,則選C的得零分,選D的得5分;如果AB都選D,雙方各得1分。
顯然,對群體來說最好的結(jié)果是雙方都選C,各得3分,共得6分。如果一方選C,一方選D,總體得5分。如果兩人都選D,總體得2分。
對策學(xué)界用這個矩陣來描述個體理性與群體理性的沖突:每個人在追求個體利益最大化時,就使群體利益受損,這就是囚徒困境。在矩陣中,對于A來說,當對方選 C,他選D得5分,選C只得3分;當對方選D,他選D得1分,選C得零分。因此,無論對方選C或D,對A來說,選D都得分最多。這是A單方面的優(yōu)超策略。而當兩個優(yōu)超策略相遇,即A,B都選D時,結(jié)果是各得1分。這個結(jié)果在矩陣中并非最優(yōu)。困境就在于,每個人采取各自的優(yōu)超策略時,得出的解是穩(wěn)定的,但不是帕累托最優(yōu)的,這個結(jié)果體現(xiàn)了個體理性與群體理性的矛盾。在數(shù)學(xué)上,這個一次性決策的矩陣沒有最優(yōu)解。
如果博弈進行多次,只要對策者知道博弈次數(shù),他們在最后一次肯定采取互相背叛的策略。既然如此,前面的每一次也就沒有合作的必要,因此,在次數(shù)已知的多次博弈中,對策者沒有一次會合作。
如果博弈在多人間進行,而且次數(shù)未知,對策者就會意識到,當持續(xù)地采取合作并達成默契時,對策者就能持續(xù)地各得3分,但如果持續(xù)地不合作的話,每個人就永遠得1分。這樣,合作的動機就顯現(xiàn)出來。多次對局下,未來的收益應(yīng)比現(xiàn)在的收益多一個折現(xiàn)率W,W越大,表示未來的收益越重要。在多人對策持續(xù)進行下去,且W比較大,即未來充分重要時,最優(yōu)的策略是與別人采取的策略有關(guān)的。假設(shè)某人的策略是,第一次合作,以后只要對方不合作一次,他就永不合作。對這種對策者,當然合作下去是上策。假如有的人不管對方采取什么策略,他總是合作,那么總是對他采取不合作的策略得分最多。對于總是不合作的人,也只能采取不合作的策略。
艾克斯羅德做了一個實驗,邀請多人來參加游戲,得分規(guī)則與前面的矩陣相同,什么時候結(jié)束游戲是未知的。他要求每個參賽者把追求得分最多的策略寫成計算機程序,然后用單循環(huán)賽的方式將參賽程序兩兩博弈,以找出什么樣的策略得分最高。
第一輪游戲有14個程序參加,再加上艾克斯羅德自己的一個隨機程序(即以50%的概率選取合作或不合作),運轉(zhuǎn)了300次。結(jié)果得分最高的程序是加拿大學(xué)者羅伯布寫的"一報還一報"(tit for tat)。這個程序的特點是,第一次對局采用合作的策略,以后每一步都跟隨對方上一步的策略,你上一次合作,我這一次就合作,你上一次不合作,我這一次就不合作。艾克斯羅德還發(fā)現(xiàn),得分排在前面的程序有三個特點:第一,從不首先背叛,即"善良的";第二,對于對方的背叛行為一定要報復(fù),不能總是合作,即" 可激怒的";第三,不能人家一次背叛,你就沒完沒了的報復(fù),以后人家只要改為合作,你也要合作,即"寬容性"。
為了進一步驗證上述結(jié)論,艾氏決定邀請更多的人再做一次游戲,并把第一次的結(jié)果公開發(fā)表。第二次征集到了62個程序,加上他自己的隨機程序,又進行了一次競賽。結(jié)果,第一名的仍是"一報還一報"。艾氏總結(jié)這次游戲的結(jié)論是:第一,"一報還一報"仍是最優(yōu)策略。第二,前面提到的三個特點仍然有效,因為63人中的前15名里,只有第8名的哈靈頓程序是"不善良的",后15名中,只有1個總是合作的是"善良的"??杉づ院蛯捜菪砸驳玫搅俗C明。此外,好的策略還必須具有的一個特點是"清晰性",能讓對方在三、五步對局內(nèi)辨識出來,太復(fù)雜的對策不見得好。"一報還一報"就有很好的清晰性,讓對方很快發(fā)現(xiàn)規(guī)律,從而不得不采取合作的態(tài)度。
合作的進行過程及規(guī)律
"一報還一報"的策略在靜態(tài)的群體中得到了很好的分數(shù),那么,在一個動態(tài)的進化的群體中,這種合作者能否產(chǎn)生、發(fā)展、生存下去呢?群體是會向合作的方向進化,還是向不合作的方向進化?如果大家開始都不合作,能否在進化過程中產(chǎn)生合作?為了回答這些疑問,艾氏用生態(tài)學(xué)的原理來分析合作的進化過程。
假設(shè)對策者所組成的策略群體是一代一代進化下去的,進化的規(guī)則包括:一,試錯。人們在對待周圍環(huán)境時,起初不知道該怎么做,于是就試試這個,試試那個,哪個結(jié)果好就照哪個去做。第二,遺傳。一個人如果合作性好,他的后代的合作基因就多。第三,學(xué)習(xí)。比賽過程就是對策者相互學(xué)習(xí)的過程,"一報還一報"的策略好,有的人就愿意學(xué)。按這樣的思路,艾氏設(shè)計了一個實驗,假設(shè)63個對策者中,誰在第一輪中的得分高,他在第二輪的群體中所占比例就越高,而且是他的得分的正函數(shù)。這樣,群體的結(jié)構(gòu)就會在進化過程中改變,由此可以看出群體是向什么方向進化的。
實驗結(jié)果很有趣。"一報還一報"原來在群體中占1/63,經(jīng)過1000代的進化,結(jié)構(gòu)穩(wěn)定下來時,它占了24%。另外,有一些程序在進化過程中消失了。其中有一個值得研究的程序,即原來前15名中唯一的那個"不善良的"哈靈頓程序,它的對策方案是,首先合作,當發(fā)現(xiàn)對方一直在合作,它就突然來個不合作,如果對方立刻報復(fù)它,它就恢復(fù)合作,如果對方仍然合作,它就繼續(xù)背叛。這個程序一開始發(fā)展很快,但等到除了"一報還一報"之外的其它程序開始消失時,它就開始下降了。因此,以合作系數(shù)來測量,群體是越來越合作的。
進化實驗揭示了一個哲理:一個策略的成功應(yīng)該以對方的成功為基礎(chǔ)。"一報還一報"在兩個人對策時,得分不可能超過對方,最多打個平手,但它的總分最高。它賴以生存的基礎(chǔ)是很牢固的,因為它讓對方得到了高分。哈靈頓程序就不是這樣,它得到高分時,對方必然得到低分。它的成功是建立在別人失敗的基礎(chǔ)上的,而失敗者總是要被淘汰的,當失敗者被淘汰之后,這個好占別人便宜的成功者也要被淘汰。
那么,在一個極端自私者所組成的不合作者的群體中,"一報還一報"能否生存呢?艾氏發(fā)現(xiàn),在得分矩陣和未來的折現(xiàn)系數(shù)一定的情況下,可以算出,只要群體的 5%或更多成員是"一報還一報"的,這些合作者就能生存,而且,只要他們的得分超過群體的總平均分,這個合作的群體就會越來越大,最后蔓延到整個群體。反之,無論不合作者在一個合作者占多數(shù)的群體中有多大比例,不合作者都是不可能自下而上的。這就說明,社會向合作進化的棘輪是不可逆轉(zhuǎn)的,群體的合作性越來越大。艾克斯羅德正是以這樣一個鼓舞人心的結(jié)論,突破了"囚犯困境"的研究困境。
在研究中發(fā)現(xiàn),合作的必要條件是:第一、關(guān)系要持續(xù),一次性的或有限次的博弈中,對策者是沒有合作動機的;第二、對對方的行為要做出回報,一個永遠合作的對策者是不會有人跟他合作的。
那么,如何提高合作性呢?首先,要建立持久的關(guān)系,即使是愛情也需要建立婚姻契約以維持雙方的合作。(火車站的小販為什么要騙人?為什么工作中要形成小組制度?換防的時候一方總是要小小地進攻一下的,在中越前線就是這樣)第二、要增強識別對方行動的能力,如果不清楚對方是合作還是不合作,就沒法回報他了。第三、要維持聲譽,說要報復(fù)就一定要做到,人家才知道你是不好欺負的,才不敢不與你合作。第四、能夠分步完成的對局不要一次完成,以維持長久關(guān)系,比如,貿(mào)易、談判都要分步進行,以促使對方采取合作態(tài)度。第五、不要嫉妒人家的成功,"一報還一報"正是這樣的典范。第六、不要首先背叛,以免擔(dān)上罪魁禍首的道德壓力。第七、不僅對背叛要回報,對合作也要作出回報。第八、不要耍小聰明,占人家便宜。
艾克斯羅德在《合作的進化》一書結(jié)尾提出幾個結(jié)論。第一、友誼不是合作的必要條件,即使是敵人,只要滿足了關(guān)系持續(xù),互相回報的條件,也有可能合作。比如,第一次世界大戰(zhàn)期間,德英兩軍在戰(zhàn)壕戰(zhàn)中遇上了三個月的雨季,雙方在這三個月中達成了默契,互相不攻擊對方的糧車給養(yǎng),到大反攻時再你死我活地打。這個例子說明,友誼不是合作的前提。第二、預(yù)見性也不是合作的前提,艾氏舉出生物界低等動物、植物之間合作的例子來說明這一點。但是,當有預(yù)見性的人類了解了合作的規(guī)律之后,合作進化的過程就會加快。這時,預(yù)見性是有用的,學(xué)習(xí)也是有用的。
當游戲中考慮到隨機干擾,即對策者由于誤會而開始互相背叛的情形時,吳堅忠博士經(jīng)研究發(fā)現(xiàn),以修正的"一報還一報",即以一定的概率不報復(fù)對方的背叛,和 "悔過的一報還一報",即以一定的概率主動停止背叛。群體所有成員處理隨機環(huán)境的能力越強,"悔過的一報還一報"效果越好,"寬大的一報還一報"效果越差。
艾克斯羅德的貢獻與局限性
艾克斯羅德通過數(shù)學(xué)化和計算機化的方法研究如何突破囚徒困境,達成合作,將這項研究帶到了一個全新境界,他在數(shù)學(xué)上的證明無疑是十分雄辯和令人信服的,而且,他在計算機模擬中得出的一些結(jié)論是非常驚人的發(fā)現(xiàn),比如,總分最高的人在每次博弈中都沒有拿到最高分。(劉邦和項羽的戰(zhàn)爭)
艾氏所發(fā)現(xiàn)的"一報還一報"策略,從社會學(xué)的角度可以看作是一種"互惠式利他",這種行為的動機是個人私利,但它的結(jié)果是雙方獲利,并通過互惠式利他有可能覆蓋了范圍最廣的社會生活,人們通過送禮及回報,形成了一種社會生活的秩序,這種秩序即使在多年隔絕,語言不通的人群之間也是最易理解的東西。比如,哥倫布登上美洲大陸時,與印地安人最初的交往就開始于互贈禮物。有些看似純粹的利他行為,比如無償捐贈,也通過某些間接方式,比如社會聲譽的獲得,得到了回報。研究這種行為,將對我們理解社會生活有很重要的意義。
囚徒困境擴展為多人博弈時,就體現(xiàn)了一個更廣泛的問題──"社會悖論",或"資源悖論"。人類共有的資源是有限的,當每個人都試圖從有限的資源中多拿一點兒時,就產(chǎn)生了局部利益與整體利益的沖突。人口問題、資源危機、交通阻塞,都可以在社會悖論中得以解釋,在這些問題中,關(guān)鍵是通過研究,制定游戲規(guī)則來控制每個人的行為。
艾克斯羅德的一些結(jié)論在中國古典文化道德傳統(tǒng)中可以很容易地找到對應(yīng),"投桃報李"、"人不犯我,我不犯人"都體現(xiàn)了"tit for tat"的思想。但這些東西并不是最優(yōu)的,因為"一報還一報"在充滿了隨機性的現(xiàn)實社會生活里是有缺陷的。對此,孔子在幾千年前就說出了"以德報德,以直報怨"這樣精彩的修正策略,所謂"直",就是公正,以公正來回報對方的背叛,是一種修正了的"一報還一報",修正的是報復(fù)的程度,本來會讓你損失5分,現(xiàn)在只讓你損失3分,從而以一種公正審判來結(jié)束代代相續(xù)的報復(fù),形成文明。
但是,艾氏對博弈者的一些假設(shè)和結(jié)論使其研究不可避免地與現(xiàn)實脫節(jié)。首先,《合作的進化》一書暗含著一個重要的假定,即,個體之間的博弈是完全無差異的。現(xiàn)實的博弈中,對策者之間絕對的平等是不可能達到的。一方面,對策者在實際的實力上有差異,雙方互相背叛時,可能不是各得1分,而是強者得5分,弱者得0分,這樣,弱者的報復(fù)就毫無意義。另一方面,即使對局雙方確實旗鼓相當,但某一方可能懷有賭徒心理,認定自己更強大,采取背叛的策略能占便宜。艾氏的得分矩陣忽視了這種情形,而這種賭徒心理恰恰在社會上大量引發(fā)了零和博弈。因此,程序還可以在此基礎(chǔ)上進一步改進。
其次,艾氏認為合作不需預(yù)期和信任。這是他受到質(zhì)疑頗多之處。對策者根據(jù)對方前面的戰(zhàn)術(shù)來制定自己下面的戰(zhàn)術(shù),合作要求個體能夠識別那些曾經(jīng)相遇過的個體并且記得與其相互作用的歷史,以便作出反應(yīng),這些都暗含著"預(yù)期"行為。在應(yīng)付復(fù)雜的對策環(huán)境時,信任可能是對局雙方達成合作的必不可少的環(huán)節(jié)。但是,預(yù)期與信任如何在計算機的程序中體現(xiàn)出來,仍是需要研究的。
最后,重復(fù)博弈在現(xiàn)實中是很難完全實現(xiàn)的。一次性博弈的大量存在,引發(fā)了很多不合作的行為,而且,對策的一方在遭到對方背叛之后,往往沒有機會也沒有還手之力去進行報復(fù)。比如,資本積累階段的違約行為,國家之間的核威懾。在這些情況下,社會要使交易能夠進行,并且防止不合作行為,必須通過法制手段,以法律的懲罰代替?zhèn)€人之間的"一報還一報",規(guī)范社會行為。這是艾克斯羅德的研究對制度學(xué)派的一個重要啟發(fā)。
8.博弈論與非對稱信息博弈論、管理博弈論的比較[1]
博弈論是非對稱信息博弈論與管理博弈論的理論基礎(chǔ),非對稱信息博弈論與管理博弈論都是博弈論的應(yīng)用分支。非對稱信息博弈論是非合作博弈論在經(jīng)濟學(xué)上的應(yīng)用,主要研究非對稱信息結(jié)構(gòu)下的最優(yōu)契約安排問題;管理博弈論是博弈論和非對稱信息博弈論在管理學(xué)中的應(yīng)用,主要研究多目標、多因素、多階段下的管理激勵與約束機制設(shè)計問題。
博弈論偏重方法論研究,局中人地位平等,沒有明確的設(shè)計主體,注重定量模型化分析,研究的目的是求得博弈問題的納什均衡解。非對稱信息博弈論主要基于委托—代理理論框架下設(shè)計最優(yōu)交易契約,設(shè)計主體為委托人,實施對象為代理人,委托人與代理人之間信息非對稱,委托人通過設(shè)計一種激勵機制,使代理人按他所期望的方向行動。
管理博弈論以管理問題為導(dǎo)向,設(shè)計主體是管理者,實施對象是被管理者(有限理性人),管理者通過設(shè)計和建立有效的激勵與約束機制,激勵、約束、規(guī)范被管理者建立有效的激勵與約束機制,激勵、約束、規(guī)范被管理者的行為。管理博弈論對管理博弈問題的表述形式主要采用機制式表述,同時,針對具體問題也可靈活應(yīng)用博弈論的戰(zhàn)略式表述、擴展式表述及非對稱信息博弈論的特征函數(shù)式表述。
非對稱信息博弈論與博弈論、管理博弈論的比較
1.博弈論(含合作博弈論和非合作博弈論) | 2.非對稱信息博弈論 | 3.管理博弈論 | |
本質(zhì)關(guān)系 | 是2、3基礎(chǔ) | 是非合作博弈論在經(jīng)濟學(xué)上的應(yīng)用 | 是合作博弈論、非合作博弈論、非對稱信息博弈論在管理學(xué)上的應(yīng)用 |
研究著眼點 | 方法論導(dǎo)向 | 經(jīng)濟問題導(dǎo)向 | 管理問題導(dǎo)向 |
研究結(jié)果體現(xiàn) | 綜合信息結(jié)構(gòu)下可能的均衡結(jié)果 | 綜合信息結(jié)構(gòu)下的激勵與約束機制設(shè)計 | |
博弈的一般表達方式 | 戰(zhàn)略式表述;擴展式表述; | 特征函數(shù)式表述 | 戰(zhàn)略式表述;擴展式表述;特征函數(shù)式表述;機制式表述 |
對“機制”的定義 | 博弈框架 | 契約 | 管理系統(tǒng)內(nèi)各分系統(tǒng)、各要素之間相互
作用、相互聯(lián)系、相互制約的形式及其運動原理和內(nèi)在的、本質(zhì)的工作方式 |
設(shè)計主體 | 不甚明確 | 委托人 | 管理組織 |
針對對象 | 不甚明確 | 理性代理人 | 有限性的管理對象(可以是組織、群體或個人) |
信息狀況 | 信息分散化 | 信息不對稱 | 信息復(fù)雜化、多樣化 |
量化情況 | 定量 | 定量 | 定性定量相結(jié)合 |
施行情況 | 假定施行,但不明確考慮 | 假定施行,且明確考慮 | 假定施行,明確考慮如何施行,且在施行過程中進行評估、修改、完善 |
9.博弈論案例分析
案例一:博弈論在企業(yè)人力資本投資中的應(yīng)用[2]
一、引言
一個企業(yè)能否在市場中取得經(jīng)濟優(yōu)勢,依賴于企業(yè)科技優(yōu)勢、產(chǎn)品的市場適應(yīng)性等等,而這一切又源于人才優(yōu)勢。因此,一個企業(yè)面臨著如何盡可能地保持自己人力資源的優(yōu)勢,如何吸引優(yōu)秀人才加入企業(yè)添加新動力,如何有效培訓(xùn)使己有員工獲得技能的提高,如何使員工適應(yīng)外部環(huán)境變化的要求,如何有效挽留公司的核心人才等等。但是統(tǒng)計調(diào)查顯示,我國的培訓(xùn)現(xiàn)狀不盡如人意??傮w來看,我國企業(yè)培訓(xùn)管理的制度化、規(guī)范化程度有待加強,培訓(xùn)計劃執(zhí)行不力,培訓(xùn)效果跟蹤與評價環(huán)節(jié)薄弱,培訓(xùn)對改善員工績效的效用沒有發(fā)揮,培訓(xùn)結(jié)果與員工晉升沒有太大影響等。造成這種現(xiàn)狀的原因固然是多方面的,其中一個主要原因就是人力資本投資收益的滯后性和不確定性,擔(dān)心員工“硬了翅膀就飛走”,得不償失。企業(yè)是否增加人力資本投資,員工是否留任企業(yè),都是利益的博弈,結(jié)果是選擇有利于自己的戰(zhàn)略。本文用博弈論對企業(yè)人力資本投資作分析,說明企業(yè)應(yīng)當進行人力資本投資和投資后應(yīng)采取措施保證人力資本投資收益的獲取。
二、概念和假定
1.概念界定
①人力資本。人力資本是通過投資于已有人力資源而形成的、以復(fù)雜勞動力為載體的、能實現(xiàn)價值增值的可變資本。
②企業(yè)人力資本投資。企業(yè)人力資本投資是指企業(yè)通過一定的投入(貨幣、資本或?qū)嵨?獲得人力資源,增加企業(yè)員工的知識、技能、健康水平,提高企業(yè)管理、文化水平和企業(yè)形象,從而提升企業(yè)人力資本存量,使企業(yè)經(jīng)濟效益提高的一種投資行為。
2.基本假設(shè)
?、俳?jīng)濟人。經(jīng)濟人假設(shè)是指無論是組織還是個人,追求自身利益的最大化。
?、谕耆畔ⅰM耆畔⑹侵感畔⑹峭耆〞车?不存在滯塞,而且客觀存在的信息的獲取是不需要成本的。
③物質(zhì)資本充足。商品的生產(chǎn)總是物質(zhì)資本和人力資本結(jié)合在一起進行的。
要使生產(chǎn)高效率的進行,物質(zhì)資本和人力資本必須保持適當?shù)谋壤?/p>
三、人力資本投資與員工個人的博弈分析
本文從企業(yè)與員工之間的角度作人力資本投資的完全信息靜態(tài)博弈分析,重點分析企業(yè)是否增加人力資本投資以及投資后如何行動。
假定在完全信息的條件下,企業(yè)和員工都是理性的。企業(yè)可以選擇對員工培訓(xùn)或不培訓(xùn)。根據(jù)企業(yè)的選擇,員工會做出留下或是轉(zhuǎn)投其他企業(yè)的選擇。假設(shè)企業(yè)不對員工進行培訓(xùn)是員工的收入為d,當企業(yè)選擇培訓(xùn),假設(shè)分攤到員工個人的培訓(xùn)費用為c,經(jīng)過培訓(xùn)后多支付員工的薪水為e(e可以為零,即經(jīng)過培訓(xùn)后不增加員工薪水),經(jīng)過培訓(xùn)后員工為企業(yè)帶來的收益增加值為b。又假設(shè)員工離職去另一單位獲得的報酬為a。這里為了分析更簡單一些,假設(shè)員工經(jīng)過培訓(xùn)與未經(jīng)過培訓(xùn)跳槽的收入一樣,都為a。有時候培訓(xùn)后由于員工技能提高跳槽會獲得更多的收入,但是并不影響下面的分析。企業(yè)培訓(xùn)博弈分析如表1所示: 當b-c-e<0時,即企業(yè)對員工培訓(xùn)后得到的收益增加值小于支出時,不管員工做出如何決策,企業(yè)都不會得到任何的收益增加值,因此企業(yè)是不會對員工進行培訓(xùn)投入的。
當b-c-e>0時,該博弈成立并可能會出現(xiàn)兩種均衡:如果此時員工選擇留下所獲得的收益d+e大于其選擇跳槽時所獲的收益a時,理性的員工必定會留在原來的企業(yè),企業(yè)也必然會選擇培訓(xùn)投入,這也是這個博弈中雙方的最優(yōu)決策;如果此時員工選擇留下所獲得的收益d+e小于其選擇跳槽時所獲的收益a時,理性的員工必定選擇跳槽,此時企業(yè)損失為c,損失最慘重。對企業(yè)而言,如果知道這樣做令員工跳槽的話,那么企業(yè)還不如剛開始就不培訓(xùn),那樣蒙受的損失會少些。這里需要指出的是,一個員工是否跳槽并不簡單的取決于對方企業(yè)開出的薪酬。影響因素有很多,比如員工個性是否與企業(yè)匹配、員工個人發(fā)展前景、員工興趣與崗位的匹配等等。上述表格中,企業(yè)如果不對員工進行培訓(xùn),那么員工留下或離職取決于現(xiàn)有收入d和跳槽企業(yè)的薪酬a。
如果d>a,員工留下:反之員工跳槽
總之,員工是否留任企業(yè),是一種利益的博弈,并且企業(yè)與員工之間存在著信息的不對稱,企業(yè)必須采取先發(fā)行動傳遞信號減弱員工離任的動機,只要企業(yè)能留住員工,人力資本投資就會給企業(yè)帶來巨大的經(jīng)濟效益。
案例二:博弈論在企業(yè)經(jīng)營活動的應(yīng)用策略[3]
哈佛商學(xué)院的邁克爾·波特教授提出的波特五力分析模型,給出了我們思考行業(yè)市場競爭狀況和態(tài)勢時一種全面而詳細的分析方法,其中一種力量是潛在進入者的威脅。
那么,根據(jù)市場類型(完全競爭市場、壟斷競爭市場、完全壟斷市場和寡頭壟斷市場),由于多數(shù)行業(yè)市場屬于壟斷競爭市場,就存在現(xiàn)有企業(yè)和新進入者之間的進入和退出博弈,這取決于彼此結(jié)構(gòu)性的進入障礙、對關(guān)鍵資源的控制度、規(guī)模經(jīng)濟效應(yīng)及現(xiàn)有企業(yè)的市場優(yōu)勢的因素。
如果你是現(xiàn)有行業(yè)的壟斷者和一定程度的影響者,阻止?jié)撛谶M入者進入市場或遏止現(xiàn)有企業(yè)惡性競爭的博弈策略有:
1.擴大生產(chǎn)能力策略
壟斷者為阻止?jié)撛谶M入者進入市場,壟斷者可能對潛在進入者進行威脅。但壟斷者的這種威脅是否能達到阻止進入的目的,取決于其承諾。所謂承諾(Promise),是指對局者所采取的某種行動,這種行動使其威脅成為一種令人可信的威脅。那么,一種威脅在什么條件下會變得令人可信呢?一般是,只有當對局者在不實行這種威脅會遭受更大損失的時候,與承諾行動相比,空頭威脅無法有效阻止市場進入的主要原因是,它是不需要任何成本的。發(fā)表聲明是容易的,僅僅宣稱將要做什么或者標榜自己是說一不二的人也都缺乏實質(zhì)性的意義。因此,只有當對局者采取了某種行動,而且這種行動需要較高的成本或代價,才會使威脅變得可信。
2.保證最低價格條款的策略
所謂“保證最低價格”條款策略,即可采取限制性定價策略,通過收取低于進入發(fā)生時的價格來防范進入。如某商店規(guī)定,顧客在本商店購買這種商品一定時期內(nèi)(如一個月),如果其他任何商店以更低的價格出售同樣的商品,本店將退還差價,并補償差額的一定百分比(如10% )。例如,如果你在該商店花5 000元購買了一架尼康相機,一周后你在另一家商店發(fā)現(xiàn)那里只賣4500元,那么你就可以向該商店交涉,并獲得550元的退款。
又如假定一個將存在兩期的市場。在第1期只有一個廠商,面臨兩種選擇:
?、僦贫ㄒ粋€壟斷高價60元,可獲1 000元的利潤,但會使?jié)撛谄髽I(yè)認為該行業(yè)有利可圖,從而選擇在第2期進入;而一旦該市場有兩個企業(yè)存在,將會使市場價格下降到30元,企業(yè)利潤降為200元。這樣,兩期的總利潤是1000+200=1200元。
?、谥贫ǖ蛢r40元,潛在企業(yè)如果進來,價格降到20元,兩個企業(yè)的利潤都將是0。
故此時潛在企業(yè)將不會進入。這樣,第二期的價格可以確定一個壟斷高價60元,因此總利潤將為600+1000=1600元。
對消費者來說,保證最低價格條款使你至少在一個月內(nèi)不會因為商品降價而后悔你的購買,但這種條款對消費者是承諾,對競爭者是警告,無疑是企業(yè)之間競爭的一種手段。
保證最低價格條款是一種承諾,由于法律的限制,商店在向消費者公布了這一條款之后是不能不實行的,因此它是絕對可信的。這一承諾隱含著企業(yè)A向企業(yè)B發(fā)出的不要降價競爭的威脅,并使這種威脅產(chǎn)生其預(yù)期的效果。
3.限制進入定價策略
限制進入定價是指現(xiàn)有企業(yè)通過收取低于進入發(fā)生的價格的策略來防范進入,潛在進入者看到這一低價后,推測出進入后價格也會那么低甚至更低,因而進入該市場終將無利可圖而放棄進入。
4.掠奪性定價策略
掠奪性定價是指將價格設(shè)定為低于成本來達到驅(qū)逐其他企業(yè)的目的,而期望由此發(fā)生的損失在新進入企業(yè)或者競爭對手被逐出市場后,掠奪企業(yè)能夠行使市場權(quán)力時可能得到補償,即在驅(qū)逐其他企業(yè)后,再制定壟斷高價以彌補前期的損失。這也是一種價格報復(fù)策略。掠奪性定價與限制定價之間的差異在于限制定價是針對那些尚未進入市場的企業(yè),是想較長一段時間內(nèi)維持低價來限制新企業(yè)的進入,而掠奪性定價則將矛頭指向已經(jīng)進入的企業(yè)或即將來臨之際。如你產(chǎn)能過剩,在新企業(yè)進入時可以進行產(chǎn)能擴張,將商品大幅降價防堵其進入。
5.廣告戰(zhàn)博弈
有些商品只有在使用后才知道其質(zhì)量真正如何,我們把這種商品稱為經(jīng)驗品。只有生產(chǎn)那些高質(zhì)量經(jīng)驗品的企業(yè)才會選擇做巨額廣告,而低質(zhì)量的企業(yè)將不會做廣告。原因是高質(zhì)量經(jīng)驗品會有大量的回頭客,而低質(zhì)量經(jīng)驗品則鮮有人再次光顧。
另外現(xiàn)有廠商之間產(chǎn)量、價格競爭的博弈,尚有古諾模型、伯川德模型可以描述。博弈理論在宏微觀層面對企業(yè)參與競爭、制定競爭策略均有指導(dǎo)意義。著名營銷專家希頓曾說,企業(yè)家的藝術(shù)就是對企業(yè)的策略性經(jīng)營和管理,博弈作為策略,企業(yè)在當今激烈的市場競爭中需要博弈!
案例三:博弈論在企業(yè)管理中的應(yīng)用[4]
一、博弈論在企業(yè)決策中的應(yīng)用
1.博弈論成果與經(jīng)營決策
博弈論的研究成果可直接運用于現(xiàn)代企業(yè)的經(jīng)營決策之中。在市場經(jīng)濟條件下,企業(yè)之間的競爭日益加劇,行業(yè)內(nèi)的競爭逐漸表現(xiàn)為幾個大型集團之間的直接對抗。從博弈定義來看,這類問題都可歸結(jié)為博弈問題。因此企業(yè)運用博弈論中的決策模型進行決策,將使決策過程更加合理化。當今社會,各個方面的競爭性和對抗性日益加劇,人們對自身行為、理性決策和對效率的追求日益增高,現(xiàn)代企業(yè)管理充滿了博弈的思想。
2.博弈論與企業(yè)最優(yōu)決策
在社會經(jīng)濟生活中,企業(yè)或個人為了自身利益的最大化,面對市場會做出自己的最優(yōu)決策,不同的市場情形會影響經(jīng)濟主體人的決策行為。在完全競爭市場條件下,企業(yè)會根據(jù)給定商品的市場價格計算出生產(chǎn)和供應(yīng)到市場上的商品的數(shù)量,以實現(xiàn)最大的利潤。而寡頭市場的情形要比完全競爭市場復(fù)雜得多。企業(yè)大量面對的是信息不完全的市場,企業(yè)不知道面對強大的競爭對手該如何做出抉擇,市場的時效性要求企業(yè)必須在信息不完全的情況下做出決策。在這樣的決策中存在著三個合理的假設(shè)。
第一,理性的“經(jīng)濟人”。每一個行為主體都依據(jù)自身利益的最大化作為行動的出發(fā)點。
第二,每一個行為主體做出的決策都不是在真空的世界中?,F(xiàn)實的世界使得一個人的生存必須以他人的生存為前提。這種相互依賴的關(guān)系使得一個行為主體的決策會對其他行為主體產(chǎn)生重要的影響,其他行為主體的決策也會直接影響著這個行為主體的決策結(jié)果。
第三,寡頭市場的情形。也即一個行業(yè)里面只有少數(shù)幾家企業(yè),甚至只有兩三家企業(yè),每一方的市場份額都很大。由于競爭對手很少,每一個主體的行為產(chǎn)生的后果受對手行為的影響都很大。那么這樣的決策就帶有了博弈的色彩。
3.博弈均衡理論與企業(yè)決策
企業(yè)決策要充分考慮均衡,博弈論的精髓在于其中的任何一個理性決策者,必須考慮在其他局中人反應(yīng)的基礎(chǔ)上來選擇自己最理想的行動方案。所謂均衡,即所有局中參與人的最優(yōu)策略組合,各方博弈產(chǎn)生的結(jié)果是一個均衡結(jié)局,它可能不是局中各方及整體的利益最大化,但它是在已給定信息與知識條件下的一種必然結(jié)果,因為任何一方改變策略而導(dǎo)致均衡的變化都有可能使自己得到一個更差的結(jié)果。近來,人們越來越重視博弈論在市場競爭過程中的作用,人們正在通過調(diào)整決策,避免沖突以尋求合作,實現(xiàn)共贏,規(guī)避雙輸。
二、博弈論在構(gòu)建和諧企業(yè)中的應(yīng)用
博弈論的研究成果,提高了人們對競爭和沖突這一社會現(xiàn)象的認識,對于我們在現(xiàn)實生活中如何運用合作的理念,創(chuàng)建和諧企業(yè)具有重要的啟示和作用。企業(yè)作為社會的組成單元,在構(gòu)建社會主義和諧社會中承擔(dān)著義不容辭的責(zé)任。對企業(yè)來說,“和諧”的基本特征應(yīng)當表現(xiàn)為依法治企、科學(xué)發(fā)展、協(xié)調(diào)有序、安全環(huán)保、公平誠信、服務(wù)社會,并建立一個長效的協(xié)調(diào)機制,其核心在于通過促進企業(yè)內(nèi)外環(huán)境的“和諧”,達到企業(yè)的經(jīng)濟效益與社會效益相統(tǒng)一,最終實現(xiàn)企業(yè)健康、協(xié)調(diào)、可持續(xù)發(fā)展。
1.處理好個人、集體和國家的利益關(guān)系
在市場經(jīng)濟中,個人、企業(yè)和政府都會追求自己的利益,在各自的運轉(zhuǎn)環(huán)境中,實際上都處于博弈狀態(tài),各自都是在現(xiàn)實生活環(huán)境中的博弈一方,沖突和矛盾是難免的。隨著國有企業(yè)改革的不斷深化,在股份制改造和現(xiàn)代化企業(yè)制度建設(shè)過程中,輪崗、下崗、合并、重組等問題所引發(fā)的分工、收入、保障的差距越來越成為矛盾的焦點。掩蓋這種利益的差別,否認博弈的現(xiàn)實并不能解決問題。所以,需要客觀地看待這些差別。
2.處理好博弈與規(guī)則透明、誠實守信的關(guān)系
規(guī)則透明和誠實守信是博弈各方達成協(xié)議的基礎(chǔ),規(guī)則透明是互信的條件。管理者要想取得人們的信任,政策必須公開、公正。對于企業(yè),企業(yè)管理者要取得職工的信任和擁護,企業(yè)要在市場上立得住、站得穩(wěn),必須講誠信、講公平、講公正。如果所要的結(jié)果不是通過透明、可信的規(guī)則取得的,必然不會與職工群眾達成共識,企業(yè)氛圍也不會是和諧的、穩(wěn)定的。
3.處理好博弈過程中利益各方的關(guān)系
和諧企業(yè)建立的基礎(chǔ)是企業(yè)各方面的共贏,博弈各方達成的協(xié)議雖然未必是利益均等,但應(yīng)該是各方面都能接受的。建立和諧企業(yè),需要從根本上、制度上解決問題,而制度的建立、措施的完善應(yīng)建立在科學(xué)的基礎(chǔ)上,建立在各方都能接受的共贏的基礎(chǔ)上,而不是企業(yè)方想怎樣做就怎樣做。如果不能保證各方共贏,必然得不到其他方面的支持,那它必然是不穩(wěn)定的、不和諧的,甚至?xí)?dǎo)致更多、更嚴重的問題。
4.處理好經(jīng)濟利益之外的博弈關(guān)系
和諧不完全建立在經(jīng)濟利益上,除此之外仍然有很多人文因素影響著社會的和諧。因此,企業(yè)管理者的充分溝通、理解職工的非經(jīng)濟期望和需求,給予人文關(guān)懷,對于促進和諧社會的形成有著不可忽視的作用。
三、博弈論在企業(yè)價格戰(zhàn)中的應(yīng)用
在現(xiàn)實生活中,我們經(jīng)常會遇到各種各樣的價格大戰(zhàn),如彩電大戰(zhàn)、冰箱大戰(zhàn)、空調(diào)大戰(zhàn)等,這些大戰(zhàn)的受益者首先是消費者。在這里,廠家價格大戰(zhàn)的結(jié)局是一個“納什均衡”,而且價格戰(zhàn)的結(jié)果是誰都沒賺到錢,因為博弈雙方的利潤正好是零。這個結(jié)果可能對消費者是有利的,但對廠商而言是災(zāi)難性的。所以,價格戰(zhàn)對于廠商而言意味著自殺。從中我們可以引申出兩個問題,一是競爭削價的結(jié)果或“納什均衡”可能導(dǎo)致一個零利潤結(jié)局;二是如果不采取價格戰(zhàn),作為一種敵對博弈論其結(jié)果有兩種,一種是企業(yè)采取正常價格策略,另一種是采取高價格策略形成壟斷價格。事實上,完全競爭的均衡就是“納什均衡”或“非合作博弈均衡”。在這種狀態(tài)下,沒一個廠商或者消費者是按照別人已定的價格來進行決策。在這種均衡中,企業(yè)要使利潤最大化,消費者要使效用最大化,結(jié)果導(dǎo)致了零利潤,也就是說價格等于邊際成本。