登錄

價格優(yōu)化模型

百科 > 管理工具 > 價格優(yōu)化模型

1.價格優(yōu)化模型簡介

價格優(yōu)化模型(PriceOptimizationModels)比較抽象,我們用收益管理來解讀.原則是將合適的產(chǎn)品在合適的時間,以合適的價格銷售給合適的顧客,并由此使企業(yè)在其產(chǎn)品中獲得最大限度的收益。它以市場細分需求預(yù)測為基礎(chǔ),一方面采取超售(通過超生產(chǎn)規(guī)模來接受訂貨)的方法來減少虛假訂貨帶來的不必要的虛耗;另一方面采取存貨控制的方法,將市場細分、需求預(yù)測和產(chǎn)品定價緊密結(jié)合,最大限度地適應(yīng)市場需求的多樣性,發(fā)掘產(chǎn)品在市場的獲利潛力,實現(xiàn)收益的最大化。

2.Price Optimization Models[1]

Image:價格優(yōu)化模型.jpg

25種最流行的管理工具
客戶關(guān)系管理
全面質(zhì)量管理
顧客細分
外包
核心能力
供應(yīng)鏈管理
戰(zhàn)略規(guī)劃
業(yè)務(wù)流程再造
知識管理
使命書和企業(yè)愿景書
平衡記分卡
作業(yè)基礎(chǔ)管理
忠誠度管理
六西格瑪
戰(zhàn)略聯(lián)盟
基準管理
變革管理計劃
增長戰(zhàn)略
經(jīng)濟附加值增值分析
價格優(yōu)化模型
開放市場創(chuàng)新
規(guī)模定制
情景設(shè)定和突發(fā)計劃
海外經(jīng)營
射頻識別
[編輯]

Price Optimization Models are mathematical programs that calculate price elasticities, or how demand varies at different price levels, then combine that data with information on costs and inventory levels to recommend prices that will improve profits. Price Optimization Models simulate how customers will respond to price changes, supplementing managers’ instincts with data-driven scenarios. The insights help to forecast demand, develop pricing and promotion strategies, control inventory levels, and improve customer satisfaction.

3.Methodology[1]

To implement Price Optimization Models, practitioners should:

  • Select the preferred optimization model, determine the desired outputs and understand the required inputs;
  • Collect historical data—including product volumes, the company’s prices and promotions, competitors’ prices, economic conditions, product availability, and seasonal conditions as well as fixed and variable cost details;
  • Clarify the business’s value proposition and set strategic rules to guide the modeling process;
  • Load, run and revise the model;
  • Establish decision processes that incorporate modeling results without alienating key decision makers;
  • Monitor results and upgrade data input to continuously improve modeling accuracy.

4.Common Uses[1]

Price Optimization Models are used to determine initial pricing, promotional pricing and markdown (or discount) pricing.

  • Initial price optimization is well-suited to businesses that have a fairly stable base of products with long life cycles, such as grocery, chain drug, and office-supply stores, and manufacturers of commodities like packaging and tools.
  • Promotional price optimization helps businesses set temporary prices to spur sales of items with long life cycles, such as newly introduced products, products bundled together in special promotions and loss leaders.
  • Markdown optimization is well-suited to businesses that sell short life-cycle products that are subject to fashion trends and seasonality. Examples include service businesses like airlines and hotels, and certain kinds of specialty retailers, such as apparel retailers, mass merchants and big-box stores.

5.價格優(yōu)化模型案例分析[2]

  貨物運輸需求通常具有一定的派生性,這種派生性表現(xiàn)為市場對貨物的需求并由此所決定的對貨物的運輸需要,因此,在建立貨物運輸價格模型時必須要考慮三個方面的因素,第一個方面,貨物運輸需求與這些貨物的市場需求密切相關(guān),貨物運輸需求量不可能大于這些貨物的市場需求量;第二個方面,貨物運輸價格與貨物的市場價格緊密相關(guān),貨物的運輸價格需要與貨物市場的價格保持一定的比例關(guān)系,為貨物運輸?shù)挠脩袅粲幸欢ǖ内A利空間,否則,這種派生的運輸需求就有可能消失;第三個方面,貨物運輸企業(yè)必須要有一定的贏利,由于存在著多種運輸方式,各種運輸方式之間具有一定的可替代性,所以,這些運輸方式為了追求和擴大各自的利益也存在著競爭。

  如果將貨物運輸企業(yè)的利潤簡單地描述為運輸收入與運輸支出的差額,那么,可以建立貨物運輸企業(yè)的價格優(yōu)化模型:

  ob.maxπ = R(P(Ptl,Pqt),Q ? C(Q)) (1)

  st.P(Ptl,Pqt) < Pd(Q) (2)

  其中:R(P,Q)表示收入函數(shù),C(Q)表示支出函數(shù),P(Ptl,pqt表示運輸價格函數(shù),Pd(Q)表示市場價格函數(shù),Q表示運量Ptl表示鐵路運價,Pqt表示其他運輸方式的運價。目標為在運輸價格低于市場價格的約束下,使收入減支出最大。

  對于有m種運輸方式和n種運輸貨物的運輸市場,建立價格優(yōu)化模型:

  ob.maxpi=sum^n_{k=1}sum^m_{i=1}(R^k_i-C^k_i) (3)

  st.{overrightarrowalpha}^ktimes{overrightarrowalpha}^k<{overrightarrow P}^k_d (4)  k=(1,2,cdots,n)  overrightarrow P^kge0

  {overrightarrowalpha}^k=({overrightarrowalpha}^k_1,{overrightarrowalpha}^k_2,cdots,{overrightarrowalpha}^k_m) (5)

  {overrightarrow P}^k={overrightarrow P}^k_1,{overrightarrow P}^k_2,cdots,{overrightarrow P}^k_m (6)

  alpha^k_i=frac{q^k_i}{sum^m_{t=1}q^k_l} (7)

  其中:R^k_i,C^k_i分別表示第k種貨物通過第i種運輸方式運輸?shù)氖杖牒椭С觯?img class="tex" src="http://wiki.mbalib.com/w/images/math/f/a/2/fa22f662025fce3b8646ea90eac5ae49.png" alt="alpha^k_i" style="margin: 0px; border: 0px solid rgb(51, 51, 51); vertical-align: middle;"/>表示第i種運輸方式運輸?shù)倪\量占該種貨物各種運輸方式總的運輸量的比例,P^k_i表示第k種運輸方式運輸?shù)趇種貨物的運價水平,q^k_d表示第k種貨物通過第i種運輸方式運輸?shù)倪\量,vec{P}^k_d表示第k種貨物的市場價格水平。

  為簡化分析,設(shè)αk為第k種貨物各種運輸方式的加權(quán)平均運價水平占該種貨物的市場價格的比例,則式(4)可以表示為:

  {overrightarrowalpha}^ktimes{overrightarrow P}^k=alpha^ktimes{overrightarrow P}^k_d  k=(1,2,cdots,n)(8)

  設(shè)γk為拉格朗日算子,構(gòu)造函數(shù):

  F(q^k_i)=sum^n_{k=1}sum^m_{i=1}(R^k_i-C^k_i)+sum^n_{k=1}lambda^ktimes(sum^m_{i=1}alpha^k_itimes p^k_i)(9)

  根據(jù)極值條件,有:

  frac{partial F}{partial q^i_j}=0 (共i*j個方程) ?。?0)

  frac{partial F}{partial lambda^k}=0 (共k個方程) ?。?1)

  其中q^k_i之間存在如下關(guān)系:

  sum^{m}_{j=1}q^i_{j}=q^i  (12)

  并且,式(8)可以表示為:

  sum^{m}_{j=1}frac{q^k_j}{sum^m_{l=1}q^{k}_{l}}times p^k_{j}=a^ktimes p^k_d ?。?3)

  另外:

  frac{partial q^s_l}{partial q^i_j}=begin{cases}-1 & s=i land lne j  0 & otherend{cases}  (14)

  根據(jù)價格彈性(e)定義,如果p(q)為價格,q為運量,R為收入,那么:

  e=frac{partial q}{q}/frac{partial p}{p}  (15)

  并且,

  R=p(q)times q ?。?6)

  依式(15),(16)得式(17):

  e=frac{partial R}{partial q}=frac{d(p(q)times q)}{dq}

  =frac{dp}{dq}times q+p=ptimes left(1-frac{1}{e}right)  (17)

  式中根據(jù)彈性的定義,為使e負。

  將式(17)表示的結(jié)果運用到式(10)中,可以得到下式:

  frac{partial F}{partial q^i_{j}timesleft(1-frac{1}{e^i_j} right)}-sum^{m}_{lne 1land l=j} p^i_jtimesleft(1-frac{1}{e^i_j}right)-bar{c}^i_j+sum^{m}_{lne 1land l=j} bar{c}^i_{l}+lambda_itimesfrac{q^i-q^i_j}{(q^i)^2}timesleft(p^i_j-sum^m_{lne 1land l=j} p^i_{l}right)  (18)

  frac{partial F}{partial lambda_k}=sum^{m}_{j=1}frac{q^k_j}{q^k}-a^ktimes p^k_fzhfj71 ?。?9)

  由此,可以推導(dǎo)出通解(為簡化分析,只考慮兩種運輸方式,即j = 1,2)

  p^i_1=frac{a^i_2(bar{c}^i_1-bar{c}^i_2)+a^itimes p^i_dtimes left(1-frac{1}{e^i_2}right)}{left(1-frac{1}{e^i_1}right)times a^i_2+left(1-frac{1}{e^i_{2}}right)times(1-a^i_2)} ?。?0)

  其中:

  frac{q^i_j}{q^i}=a^i_j,bar{c}^i_j=frac{partial C^i_j}{partial q^i_j},e^i_j=frac{dq^i_j}{q^i_j}/frac{dp^i_j}{p^i_j},

  q^i=sum^{m}_{j=1}q^i_{j},sum^{m}_{j=1}a^i_{j}=1

  overline{c}^i_j表示j種運輸方式i品類的邊際成本,overline{c}表示其他各種運輸方式的邊際成本。式(20)可以變形為:

  p^i_1= frac{bar{c}^i_1-bar{c}+a^itimes p^i_xlpzfj1timesleft(1-frac{1}{e^i_2}right)}{left(1-frac{1}{e^i_1}right)times a^i_2+left(1-frac{1}{e^i_2}right)times a^i_1}?。?1)

  由模型可以看出,對于某種品類的貨物,運輸價格主要與自身的邊際成本、各種運輸方式的綜合邊際成本、運價水平占貨物市場價格的比例、貨物的市場價格、各種運輸方式的市場份額、貨物的運輸價格彈性以及其他運輸方式的運輸價格等因素有關(guān)。其中,邊際成本與運輸距離有關(guān),價格彈性與價格有關(guān),市場占有率與市場總需求量有關(guān)。

評論  |   0條評論