登錄

人工智能

百科 > 信息技術(shù) > 人工智能

1.什么是人工智能

人工智能(Artificial Intelligence,AI)的定義可以分為兩部分,即“人工”和“智能”?!叭斯ぁ北容^好理解,爭議性也不大。有時我們會要考慮什么是人力所能及制造的,或著人自身的智能程度有沒有高到可以創(chuàng)造人工智能的地步,等等。但總的來說,“人工系統(tǒng)”就是通常意義下的人工系統(tǒng)。

關(guān)于什么是“智能”,就問題多多了。這涉及到其它諸如意識(consciousness)、自我(self)、思維(mind)(包括無意識的思維)等等問題。人唯一了解的智能是人本身的智能,這是普遍認(rèn)同的觀點。但是我們對我們自身智能的理解都非常有限,對構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及對人的智能本身的研究。其它關(guān)于動物或其它人 造系統(tǒng)的智能也普遍被認(rèn)為是人工智能相關(guān)的研究課題。

人工智能目前在計算機(jī)領(lǐng)域內(nèi),得到了愈加廣泛的重視。并在機(jī)器人,經(jīng)濟(jì)政治決策,控制系統(tǒng),仿真系統(tǒng)中得到應(yīng)用。

人工智能學(xué)科研究的主要內(nèi)容包括:知識表示、自動推理和搜索方法、機(jī)器學(xué)習(xí)和知識獲取、知識處理系統(tǒng)、自然語言理解、計算機(jī)視覺、智能機(jī)器人、自動程序設(shè)計等方面。

1)知識表示是人工智能的基本問題之一,推理和搜索都與表示方法密切相關(guān)。常用的知識表示方法有:邏輯表示法、產(chǎn)生式表示法、語義網(wǎng)絡(luò)表示法和框架表示法等。

2)常識,自然為人們所關(guān)注,已提出多種方法,如非單調(diào)推理、定性推理就是從不同角度來表達(dá)常識和處理常識的。

3)問題求解中的自動推理是知識的使用過程,由于有多種知識表示方法,相應(yīng)地有多種推理方法。推理過程一般可分為演繹推理和非演繹推理。謂詞邏輯是演繹推理的基礎(chǔ)。結(jié)構(gòu)化表示下的繼承性能推理是非演繹性的。由于知識處理的需要,近幾年來提出了多種非演澤的推理方法,如連接機(jī)制推理、類比推理、基于示例的推理、反繹推理和受限推理等。

4)搜索是人工智能的一種問題求解方法,搜索策略決定著問題求解的一個推理步驟中知識被使用的優(yōu)先關(guān)系??煞譃闊o信息導(dǎo)引的盲目搜索和利用經(jīng)驗知識導(dǎo)引的啟發(fā)式搜索。啟發(fā)式知識常由啟發(fā)式函數(shù)來表示,啟發(fā)式知識利用得越充分,求解問題的搜索空間就越小。典型的啟發(fā)式搜索方法有A*、AO*算法等。近幾年搜索方法研究開始注意那些具有百萬節(jié)點的超大規(guī)模的搜索問題。

5)機(jī)器學(xué)習(xí)是人工智能的另一重要課題。機(jī)器學(xué)習(xí)是指在一定的知識表示意義下獲取新知識的過程,按照學(xué)習(xí)機(jī)制的不同,主要有歸納學(xué)習(xí)、分析學(xué)習(xí)、連接機(jī)制學(xué)習(xí)和遺傳學(xué)習(xí)等。

6)知識處理系統(tǒng)主要由知識庫和推理機(jī)組成。知識庫存儲系統(tǒng)所需要的知識,當(dāng)知識量較大而又有多種表示方法時,知識的合理組織與管理是重要的。推理機(jī)在問題求解時,規(guī)定使用知識的基本方法和策略,推理過程中為記錄結(jié)果或通信需設(shè)數(shù)據(jù)庫或采用黑板機(jī)制。如果在知識庫中存儲的是某一領(lǐng)域(如醫(yī)療診斷)的專家知識,則這樣的知識系統(tǒng)稱為專家系統(tǒng)。為適應(yīng)復(fù)雜問題的求解需要,單一的專家系統(tǒng)向多主體的分布式人工智能系統(tǒng)發(fā)展,這時知識共享、主體間的協(xié)作、矛盾的出現(xiàn)和處理將是研究的關(guān)鍵問題。

2.人工智能的歷史

“人工智能”一詞最初是在1956年達(dá)特茅斯(Dartmouth)學(xué)會上提出的。從那以后,研究者們發(fā)展了眾多理論和原理,人工智能的概念也隨之?dāng)U展。人工智能是一門極富挑戰(zhàn)性的科學(xué),從事這項工作的人必須懂得計算機(jī)知識,心理學(xué)和哲學(xué)。人工智能是包括十分廣泛的科學(xué),它由不同的領(lǐng)域組成,如機(jī)器學(xué)習(xí),計算機(jī)視覺等等,總的說來,人工智能研究的一個主要目標(biāo)是使機(jī)器能夠勝任一些通常需要人類智能才能完成的復(fù)雜工作。但不同的時代、不同的人對這種“復(fù)雜工作”的理解是不同的。例如繁重的科學(xué)和工程計算本來是要人腦來承擔(dān)的, 現(xiàn)在計算機(jī)不但能完成這種計算, 而且能夠比人腦做得更快、更準(zhǔn)確, 因之當(dāng)代人已不再把這種計算看作是“需要人類智能才能完成的復(fù)雜任務(wù)”, 可見復(fù)雜工作的定義是隨著時代的發(fā)展和技術(shù)的進(jìn)步而變化的, 人工智能這門科學(xué)的具體目標(biāo)也自然隨著時代的變化而發(fā)展。它一方面不斷獲得新的進(jìn)展, 一方面又轉(zhuǎn)向更有意義、更加困難的目標(biāo)。目前能夠用來研究人工智能的主要物質(zhì)手段以及能夠?qū)崿F(xiàn)人工智能技術(shù)的機(jī)器就是計算機(jī), 人工智能的發(fā)展歷史是和計算機(jī)科學(xué)與技術(shù)的發(fā)展史聯(lián)系在一起的。除了計算機(jī)科學(xué)以外, 人工智能還涉及信息論、控制論、自動化、仿生學(xué)、生物學(xué)、心理學(xué)、數(shù)理邏輯、語言學(xué)、醫(yī)學(xué)和哲學(xué)等多門學(xué)科。

3.人工智能的應(yīng)用領(lǐng)域

1、問題求解

人工智能的第一大成就是下棋程序,在下棋程度中應(yīng)用的某些技術(shù),如向前看幾步,把困難的問題分解成一些較容易的子問題,發(fā)展成為搜索和問題歸納這樣的人工智能基本技術(shù)。今天的計算機(jī)程序已能夠達(dá)到下各種方盤棋和國際象棋的錦標(biāo)賽水平。但是,尚未解決包括人類棋手具有的但尚不能明確表達(dá)的能力。如國際象棋大師們洞察棋局的能力。另一個問題是涉及問題的原概念,在人工智能中叫問題表示的選擇,人們常能找到某種思考問題的方法,從而使求解變易而解決該問題。到目前為止,人工智能程序已能知道如何考慮它們要解決的問題,即搜索解答空間,尋找較優(yōu)解答。

2、邏輯推理與定理證明

邏輯推理是人工智能研究中最持久的領(lǐng)域之一,其中特別重要的是要找到一些方法,只把注意力集中在一個大型的數(shù)據(jù)庫中的有關(guān)事實上,留意可信的證明,并在出現(xiàn)新信息時適時修正這些證明。對數(shù)學(xué)中臆測的題。定理尋找一個證明或反證,不僅需要有根據(jù)假設(shè)進(jìn)行演繹的能力,而且許多非形式的工作,包括醫(yī)療診斷和信息檢索都可以和定理證明問題一樣加以形式化,因此,在人工智能方法的研究中定理證明是一個極其重要的論題。

3、自然語言處理

自然語言的處理是人工智能技術(shù)應(yīng)用于實際領(lǐng)域的典型范例,經(jīng)過多年艱苦努力,這一領(lǐng)域已獲得了大量令人注目的成果。目前該領(lǐng)域的主要課題是:計算機(jī)系統(tǒng)如何以主題和對話情境為基礎(chǔ),注重大量的常識——世界知識和期望作用,生成和理解自然語言。這是一個極其復(fù)雜的編碼和解碼問題。

4、智能信息檢索技術(shù)

信息獲取和精化技術(shù)已成為當(dāng)代計算機(jī)科學(xué)與技術(shù)研究中迫切需要研究的課題,將人工智能技術(shù)應(yīng)用于這一領(lǐng)域的研究是人工智能走向廣泛實際應(yīng)用的契機(jī)與突破口。

5、專家系統(tǒng)

專家系統(tǒng)是目前人工智能中最活躍、最有成效的一個研究領(lǐng)域,它是一種具有特定領(lǐng)域內(nèi)大量知識與經(jīng)驗的程序系統(tǒng)。近年來,在“ 專家系統(tǒng)”或“ 知識工程”的研究中已出現(xiàn)了成功和有效應(yīng)用人工智能技術(shù)的趨勢。人類專家由于具有豐富的知識,所以才能達(dá)到優(yōu)異的解決問題的能力。那么計算機(jī)程序如果能體現(xiàn)和應(yīng)用這些知識,也應(yīng)該能解決人類專家所解決的問題,而且能幫助人類專家發(fā)現(xiàn)推理過程中出現(xiàn)的差錯,現(xiàn)在這一點已被證實。如在礦物勘測、化學(xué)分析、規(guī)劃和醫(yī)學(xué)診斷方面,專家系統(tǒng)已經(jīng)達(dá)到了人類專家的水平。成功的例子如:PROSPECTOR系統(tǒng)(用于地質(zhì)學(xué)的專家系統(tǒng))發(fā)現(xiàn)了一個鉬礦沉積,價值超過1億美元。DENDRL系統(tǒng)的性能已超過一般專家的水平,可供數(shù)百人在化學(xué)結(jié)構(gòu)分析方面的使用。MY CIN系統(tǒng)可以對血液傳染病的診斷治療方案提供咨詢意見。經(jīng)正式鑒定結(jié)果,對患有細(xì)菌血液病、腦膜炎方面的診斷和提供治療方案已超過了這方面的專家。

4.人工智能的發(fā)展現(xiàn)狀及前景

目前絕大多數(shù)人工智能系統(tǒng)都是建立在物理符號系統(tǒng)假設(shè)之上的。在尚未出現(xiàn)能與物理符號系統(tǒng)假設(shè)相抗衡的新的人工智能理論之前,無論從設(shè)計原理還是從已取得的實驗結(jié)果來看,Soar 在探討智能行為的一般特征和人類認(rèn)知的具體特征的艱難征途上都取得了有特色的進(jìn)展或成就,處在人工智能研究的前沿。

80 年代,以納維爾(Newell)為代表的研究學(xué)者總結(jié)了專家系統(tǒng)的成功經(jīng)驗,吸收了認(rèn)知科學(xué)研究的最新成果,提出了作為通用智能基礎(chǔ)的體系結(jié)構(gòu)Soar。目前的Soar已經(jīng)顯示出強(qiáng)大的問題求解能力。在Soar中已實現(xiàn)了30多種搜索方法,實現(xiàn)了若干知識密集型任務(wù)(專家系統(tǒng)),如RI(用產(chǎn)生式規(guī)則表達(dá)知識,采用正向推理的控制結(jié)構(gòu),用OPSS語言寫成。)等。rooks提出了人工智能的一種新的途徑,認(rèn)為無需概念或者說無需符號表示,智能系統(tǒng)的能力可以逐步進(jìn)化。在它的研究中突出4 個概念:

1) 所處的境遇,機(jī)器人不涉及抽象的描述,而是處在直接影響系統(tǒng)的行為的境地。

2) 具體化,機(jī)器人有軀干,有直接來自周圍世界的經(jīng)驗,他們的感官起作用后立即會有反饋。

3) 智能,智能的來源不僅僅是限于計算裝置,也是由于與周圍進(jìn)行交互的動態(tài)決定。

4) 浮現(xiàn),從系統(tǒng)與周圍世界的交互以及有時候系統(tǒng)的部件間的交互浮現(xiàn)出智能。

評論  |   0條評論